Analytic expressions for ULF wave radiation belt radial diffusion coefficients

نویسندگان

  • Louis G Ozeke
  • Ian R Mann
  • Kyle R Murphy
  • I Jonathan Rae
  • David K Milling
چکیده

We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. KEY POINTS Analytic expressions for the radial diffusion coefficients are presentedThe coefficients do not dependent on energy or wave m valueThe electric field diffusion coefficient dominates over the magnetic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm

Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth’s outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8–...

متن کامل

Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory...

متن کامل

Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons

[1] The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated wit...

متن کامل

Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

[1] As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Ra...

متن کامل

Modeling energetic electron penetration into the slot region and inner radiation belt

[1] The inner radiation belt is thought to be quite stable, and only the most intense geomagnetic storms can cause energetic electron variations in the slot region and inner belt. In this paper, using energetic electron flux data from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite, we show that 100s keV electron flux enhancements in the slot regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2014